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Abstract 1— Using electric vehicles, in addition to decreasing 

the environmental concerns, can play an important role in 
decreasing the peak and filling the off-peaks of the daily load 
characteristics. In other words, in smart grids' infrastructure, the 
load characteristics can be improved by scheduling the charge 
and discharge process of electric vehicles. In smart grids, the 
customers are instantaneously informed about the load and its 
price and are able to react to the prices. This reaction pattern 
results in a wide range of changes in the load curve of the 
network. In this paper, a multi-stage model based on neural 
networks and the neuro-fuzzy network is presented for 
forecasting the daily electric load in the price-responsive 
environment of smart grids. Then, in order to determine the load 
and generation models of the set of electric vehicles based on the 
forecasted load for the next day, a complete probabilistic model of 
these vehicles in the range of parking lots is presented by 
considering three utilization strategies. These utilization 
strategies are: Uncontrolled Charging Mode (UCM), Controlled 
Charging Mode (CCM) and Smart Charge/Discharge Mode 
(SCDM). Finally, the proposed model is applied on the data of a 
target day in 2015 in NSW region of Australia's National 
Electricity Market and the charge and discharge schedule of 
electric vehicles are determined based on the forecasted load for 
the next day. The results indicate the most improvement in the 
daily load factor when the SCDM utilization strategy is 
employed. 
 

Index Terms - electric vehicles, load forecast, load factor index, 
price-responsive loads, sequential Monte-Carlo, smart grids. 

 

I.  INTRODUCTION 
ITH the emergence of smart grids, it has become 
possible to generate, transmit, and consume electric 

energy with higher efficiency and reliability, compared to 
conventional electric networks. The bidirectional flow of 
power and data in these networks is more efficient, more 
flexible, and more reliable. Therefore, there is a better 
coordination between the customers and the producers. 
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The main problem in smart grids is the way in which the 
demand side must be managed so that the peak of electricity 
load is decreased [1,2]. In fact, the right response to the load 
highly depends on the way in which the demand side is 
managed. In addition, it depends on accurate forecast of price, 
load, available renewable energies and storage resources such 
as electric vehicles. With the advance of battery technology, 
using electric vehicles is growing rapidly in some countries. In 
the future, the aggregators of power systems can consider 
electric vehicles parking (EVP) as distributed sources of 
energy. These resources play two different roles for power 
systems: the role of load when the batteries of vehicles are 
being charged and as the energy generating resources while 
they are being discharged [3,4]. 

In smart grids' infrastructure and in the domain of online 
control of these networks, the charge and discharge of EVs can 
be controlled in such a way that the efficiency of the power 
system is increased. To investigate the effects of presence of 
electric vehicles, it is necessary to completely and accurately 
model the behavior of these vehicles based on the way their 
owners use them. 

In most of the researches carried out in the domain of 
charging and discharging vehicles in parking, no attention is 
paid either to the probabilistic behavior of the EVs or to the 
reaction of customers to the forecasted load in the price-
sensitive environment of smart grids. For example, a 
controlled charging strategy aimed at decreasing the loss and 
increasing the loadability of the distribution network has been 
proposed in [6]. Also, in [7] and [8], a smart load management 
model has been presented for charging the batteries of EVs in 
order to decrease the peak load, to decrease the loss, and to 
improve the voltage, but the probabilistic behavior of EV has 
not been considered. In addition, in [9] the energy scheduling 
of the EV batteries has been optimized by probabilistic 
modeling of EVs in urban parking lots, in order to decrease the 
peak load and the charge price. In [10], the optimum charging 
of EVs has been investigated only for filling the off-peak 
periods of the load curve. In [11] and [12], the authors have 
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focused on the optimum charge and discharge scheduling of 
batteries for peak shaving, decreasing the load fluctuations, 
and decreasing the price required for electrification of 
transportation fleet. 

However, none of the aforementioned studies has paid 
attention to the load forecast as one of the main factors 
affecting the accurate charge and discharge scheduling of the 
batteries. With the emergence of smart grids and by means of 
advanced metering infrastructure (AMI), the customers 
instantaneously become aware of the electric load and prices. 
Therefore, in future smart grids it is expected that, based on 
the forecasted prices, the demand side customers change their 
consumption pattern by cutting off the load, transmitting the 
load, or even by locally generating the load. Thus, forecasting 
the electric load in the price-sensitive environment of smart 
grids seems necessary for scheduling the charge and discharge 
of EV batteries in parking lots in order to modify the power 
system's load. 

Patterns of customer’s side do not have considerable 
variations due to the forecasted price, and as a result, the 
forecasted load remains intact against the reactions of 
customers [13-16]. Therefore, in this paper, a model is 
presented for forecasting the load, taking into account the 
awareness of customers of the forecasted load and price. The 
presented multi-stage model includes the perceptron neural 
network and a neuro-fuzzy network. This forecast is obtained 
by extracting the reaction of the customers to the prices 
announced for the next day. Now, knowing the changed 
electric load for the next day, the charge and discharge of EV 
batteries in parking lots is determined in order to modify the 
system's load characteristics. 

In this paper, the complete and probabilistic model of EV 
sets as the load, storage devices, and energy generating 
devices is determined. The presented model is extracted based 
on UCM, CCM and SCDM utilization strategies. The 
sequential Monte Carlo simulation is used for simulating and 
modeling EVs. Finally, using the presented models, the effects 
of these strategies on the load curves and load factor index of a 
target day (2015/01/10) in NSW region of Australia's National 
Electricity Market are investigated. 

The remainder of this paper is organized as follows: in 
section III, the problem is described in details. The proposed 
model is presented in section IV. Numerical results and 
simulations are presented in section V. And finally, section VI 
concludes the paper. 

II.  PROBLEM STATEMENT 

A.  Elasticity of the load and the price of electricity in smart 
grids 

The reaction of customers to the forecasted price has been 
considered only in a small number of papers published so far. 
The reaction of customers to the forecasted price brings about 
significant changes in the demand pattern of the target day, 
which consequently, causes the price of electricity to change. 

The main reason that a unidirectional relationship has been 
used in conventional load and price forecasting techniques is 
the low elasticity of load to electricity price [17,18]. With the 
development of smart grids, the electric load tends to change 
its conventional inelastic behavior to a price-sensitive 
environment. In such an environment, using a bidirectional 
relationship for load and price forecasting will be possible and 
it seems necessary to consider the mutual impact of these two 
factors. 

Generally, the load is considered as the key of electricity 
price and has been reported as the input of many price 
forecasting models [19,20]. The effect of this input on 
improving the accuracy of price and load is more obvious in 
the interactive environment. Fig. 1 shows the mutual 
dependency of load and electricity price in the Australian 
power market (NSW region) in February 2012. 

 
Fig. 1. Correlation between price and load in the Australian power market 
(NSW region) in February 2012. 

In order to further investigate the dynamics of load and 
price in power markets, the load and price data of Australian 
power market (Victoria region) on December 13th 2012 has 
been used. Although the forecasted price for a considerable 
number of customers is higher than their tolerance threshold, it 
is very likely that these customers reduce their consumption in 
reaction to these prices. Consequently, only a 30MW 
reduction in load, decreases the price from 2184.8 $/MWh to 
405.9 $/MWh. This is shown in Fig. 2. 

 
Fig. 2. The load and price data of Australian power market (Victoria region) 
on December 13th 2012. 

B.  Elecrtic vehicles utilization 
Using electric vehicles’ fleet, as an energy resource which 
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does not need initial investment, will be considered as a key 
factor for smart grids in the future [21].  

Discharging vehicles for peak shaving means that little need 
will be felt for spending extra budgets to build new power 
plants in order to supply the peak load. On the other hand, 
charging the set of EVs causes the off-peak periods of the load 
to be filled, and as a result, it increases the efficiency of the 
power system.  

Using EVs is so important that, in addition to 
environmental issues, the power generated by parking lots can 
be considered as negative load, and the utilization schedules 
can be carried out based on the net or residual load. This kind 
of load is actually resulted from the difference between the 
network load and the amount of load supplied by distributed 
generations such as parking lots. 

In this paper, it is assumed that there are administrative and 
residential parking lots in the network. In this network, the 
customers become aware of the forecasted load and price 
instantaneously and are able to react to the prices. The electric 
load forecast is carried out on a daily basis. 

It should be mentioned that the first priority is to use 
personal vehicles and this is done in order to help the network 
shift and modify the load characteristics of the next day. 

III.  THE PROPOSED MODEL  

A.  FCM 
 Clustering is one of the unsupervised techniques and is an 

automatic process through which a certain data set is divided 
into a set of classes or clusters. The aim of data classification 
by using this kind of process is to separate the data in such a 
way that two data objects in a cluster are as similar as possible 
and two data objects in two different clusters are as distinct as 
possible. 

In this paper, one of the most successful clustering models, 
called Fuzzy C-Means (FCM), is used [22]. In this model, 
each data is assigned to a cluster to a certain degree that is 
determined by a membership function. By creating 
membership functions, the FCM output helps in constructing 
fuzzy inference system for stating the fuzzy quality of each 
cluster. Fig. 3 shows the proposed model containing four 
blocks. 

Through clustering, the input data is classified according to 
the load type (peak or off-peak), day type (weekday or 
weekend) and so on. In this paper, the historical price and load 
data are classified by FCM and proper data is obtained for 
training the neural network. 

B.  The neural network for initial forecast of the load and the 
price of electricity  

The initial load and the electricity price are forecasted in 
this block. The simultaneous use of load and price in this 
block causes the mutual effect of load and price to be tracked 
in this model. Therefore, in order to extract the dynamics of 
the load forecast problem in the price-sensitive environment of 
smart grids, the effect of elasticity and sensitivity of the load 

and price is studied. In this block, the multi-layer perceptron 
neural network is used to forecast the initial load and price. 
The clustered price and load data are simultaneously applied 
to the input of this block. The output of this block includes two 
data sets. The first set is the initial forecasted load for the dth 
objective day. The second set is the forecasted load and price 
for the past Nd days.  
Also, the difference between the actual and forecasted loads 
for past Nd days is calculated as follows: 

)1(  f
dLa

dLdL -=D  

To extract the if-then rules, many inputs can track the 
reaction of customers to the price. The previous temperature 
data, which is one of the factors effective on the demand of the 
system, is used in this model. Furthermore, the economic-
based load management schedules in the power market under 
the study are used as the inputs of the ANFIS network.  

m
dL

 
Fig. 3. The proposed model 

These schedules which are implemented based on time-of-
use (TOU) pricing, are common in most of the smart grids. 
This schedule is announced to the customers who are equipped 
with the measurement tools of smart grids. In this pricing 
system, the workdays have three different prices; shoulder 
peak, peak, and off-peak. In addition, weekends and holidays 
have two prices; shoulder peak and off-peak. Therefore, in 
smart grids the customers equipped with measurement tools 
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are able to change their load range each hour so that by 
shifting the consumption from expensive hours to cheap hours 
they can better save money.  

 
The following inputs are used for training the ANFIS 

network based on corresponding dLD as well as extracting the 
if-then rules: 

· The time index of the economic-based load 
management schedules, 

· The temperature data for past Nd days, 
· Pd

i and Ld
t for past Nd days. 

Under such conditions, the ANFIS network extracts the 
rules, which include the extensive changes in the price-
sensitive behavior of customers. These rules show how the 
system load will change according to the reaction of customers 
to the announced prices and the load.  

For example, the loads forecasted for the past Nd days are 
divided into the following groups: very high (VH), high (H), 
medium (M), low (L), and very low (VL). Also, the 
temperature data for the past Nd days are divided into the 
following groups: hot (H), mild (M), and cold (C), and finally, 
the load variations for the past Nd days can be divided into the 
following groups: high drop (HD), low drop (LD), negligible 
deviation (ND), low rise (LR), and high rise (HR). It must be 
mentioned that for each hour in the day d, a time index is 
selected based on the economic-based load management 
schedules.  

Eventually, the final forecasted load in the price-sensitive 
environment of smart grid is calculated by the following 
equation: 

)2(  d
i
d

m
d LLL D+=  

In this equation, dLD  can be either negative or positive. 

C.  Modeling the load and generation of parking lots based on 
the forecasted load for the next day 

In this section, the goal is to select the proper charge and 
discharge parameters of EV batteries during the hours of the 
next day. Once the parameters of charge and discharge are 
determined, the Monte Carlo simulation is carried out for a 
long period of time in order to extract the load and generation 
of the set of EVs based on the forecasted load for the next day. 

 By doing so, the scheduling and probabilistic modeling of 
EVs is carried out in order to modify the load characteristics. 
To better utilize the EVs, these vehicles must be utilized by the 
aggregators as a set of vehicles [23]. Considering the 
probabilistic nature of vehicles, the probabilistic models must 
be used for determining the model of these vehicles [24]. The 
probabilities which must be considered include battery 
capacity of the vehicle, the distance traveled by the vehicle, 
the time of leaving home, travel duration, and the time period 
during which the vehicle is parked in the administrative or 
residential parking lots. In [24], the limited normal distribution 
function has been used in order to obtain these random 
variables for limiting the generation of random variables to the 
range of interest. It should be mentioned that the mean and 

standard deviation of random variables are obtained from [24]. 
Once the distance traveled by each vehicle is determined, its 
state of charge (SOC) is obtained based on (3) [25].  
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The value of parameter Dmax is considered to be equal to 
128 km [25]. The state of charge of the vehicle during charge 
and discharge in parking lots is calculated using (4): 
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The energy generated or consumed by the set of the 
vehicles' batteries is calculated at each instance by the 
Aggregator using (5) [26]: 
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If i
ty  is equal to one, this means that the vehicle is 

connected to the network, and if the value of this parameter is 
equal to 0, it means that the vehicle is not connected to the 
network. In order to optimize the load and generation models, 
by using its online communication capability, the aggregator 
must schedule the smart charge and discharge of vehicles' 
batteries within the range of parking lots according to the 
forecasted load of the next day.  

D.  load and generation model of parking lots 
Utilization of electric vehicles includes uncontrolled 

charging mode (UCM), controlled charging mode (CCM), and 
smart charge/discharge mode (SCDM). In uncontrolled mode 
of charge, there is no control over the charging of EV batteries 
and the vehicles are charged as soon as they are connected to 
the network. In CCM and SCDM, however, it is necessary to 
determine the allowable times for scheduling the charge and 
discharge of EV batteries. Furthermore, the SOC required by 
the vehicle for its daily journey has to be determined. 
Moreover, factors such as charge and discharge rates of EV 
batteries are also effective on modification of the system load 
characteristics.  

Therefore, the parameters like the rates and allowable hours 
of charge and discharge must be selected according to the 
forecasted load and penetration of EVs in the case study. The 
allowable hours of charge and discharge of batteries are 
determined based on Xp% and Xop% which are the peak-
shaving percentage and off-peak filling percentage, 
respectively.  

In this paper, the SCDM utilization strategy is used to 
modify the forecasted load characteristics of the next day. The 
sequential Monte Carlo simulation is carried out for a long 
period of time in order to extract the load and generation 
model of EV sets based on the load forecasted for the next 
day. Thus, the probabilistic modeling and scheduling of EVs 
are carried out to modify the load characteristics. In the Monte 
Carlo simulation, the charge, discharge, and the daily journey 
of the vehicles are simulated based on the probabilistic and 
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selected parameters for a long period of time. Once the 
convergence criterion is met, the simulation is terminated and 
the load and generation models are extracted based on the load 
forecasted for the next day. In this paper, the coefficient of 
variations of mean and peak of load and generation of parking 
lots is considered as the convergence criterion. 

IV.  NUMERICAL RESULTS AND SIMULATIONS 
In this paper, a model based on the load forecasted for the 

next day in the price-sensitive environment of smart grids is 
presented for scheduling the charge and discharge of EV 
batteries in order to modify the system load characteristics.  

In this model, in order to obtain the initial forecast of load 
and price, the data of the past 48 days are used for training the 
MIMO model used for forecasting the dth target day. To 
extract the if-then rules, after carrying out a large enough 
number of experiments, the forecast is carried out for four 
weeks before the target day. The length of this interval is 
selected considering the short-term and long-term tendencies 
of the load and price. Therefore, Nd=28. 

The ANFIS network uses the Gaussian membership 
function to carry out the forecast. In addition, for the 
aforementioned 4 inputs, the number of membership functions 
are selected as 5, 3, 5, and 5, respectively. In this case, the 
ANFIS network classifies the input data based on the 
determined membership functions.  

In this paper, the load and price data of NSW region in 
Australia's National Electricity Market are used. This 
electricity market, which is the largest connected network in 
the world, experiences severe variations as well as many exits 
and unexpected disturbances [27]. Therefore, the forecast is 
carried out for January 10, 2015. In this market, customers 
become instantaneously aware of the forecasted load and price 
and are able to react to this factor. 

There are many indices for evaluating the efficiency of the 
forecast models, the most common of which is the mean 
absolute percentage error (MAPE) index. This index is defined 
by the following equation: 
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To schedule the charge and discharge of vehicles in parking 
lots, it is assumed that there are 300000 electric vehicles in the 
network under study. In the morning, the owners of EVs 
commute from the residential parking to their workplace and 
park their vehicles in the administrative parking. Also, once 
their job is done, they commute back to their home and park 
their vehicles in the residential parking. The optimization of 
charge and discharge scheduling of EVs is aimed at shifting 
the load. Therefore, the demand for energy is shifted from the 
load peak to the load off-peak. 

Table I shows the appropriate parameters of CCM and 
SCDM according the forecasted load for the target day, i.e. 
January 10, 2015. In this table, SOCmin is related to the post-
midnight SOC of administrative and residential parking lots. 
For the pre-midnight period, assuming a depth of discharge of 
0.8 for EV batteries, the SOCmin of residential parking lot is 

0.2. 
TABLE I 

THE APPROPRIATE PARAMETERS OF SCDM AND CCM BASED ON THE 
FORECASTED LOAD FOR TARGET DAY (JAN. 10, 2015 ). 

Parameters 

Utilization strategy 

CCM SCDM 

Xp% 100%  92% 

Xop% 70%  70%  
SOCmin  -  45%  

Residential charge rate of EVP   10 percent 
per hour  

10 percent 
per hour  

Administrative charge rate of 
EVP   

10 percent 
per hour  

10 percent 
per hour  

Residential discharge rate of EVP   -  
20 percent 
per hour  

Administrative discharge rate of 
EVP   -  

20 percent 
per hour  

 

Fig. 4 shows the expected load and generation models of 
residential and administrative parking lots on the target day for 
three utilization strategies. As it can be seen in the SCDM, the 
discharge capability of EVs is used so that when the load of 
system is greater than Xp% (8418MW), using the smart grid 
concept, the batteries of vehicles are discharged with the 
selected rate. In addition, when the system's load is smaller 
than Xop% (6405MW), the batteries of vehicles are charged 
with the proper rate. Then, by adding up the forecasted load 
and the expected load and generation in parking lots obtained 
by sequential Monte Carlo, the modified load characteristics of 
the system for the next day is obtained. 

Fig. 5 shows the modified load model for the target day 
based on three utilization strategies. As it can be seen, in 
SCDM utilization strategy, vehicles in administrative and 
residential parking charge in the morning in other to decrease 
the peak load in the evening. In CCM, the vehicles are being 
charged in the off-peak, and finally, in UCM, due to 
probabilistic nature of model, the vehicles are being charged in 
various hours of the day. The best load curve is achieved using 
the SCDM utilization strategy.  

In this case, the forecast error for this day is 
MAPE=2.0933%. It is observed that the online control of 
charge and discharge of EVs results in peak shaving and filling 
the off-peak. As it can be seen in the SCDM, the peak load is 
decreased and shifted from 9150 MW at 3 p.m. to 8653 MW 
at 6 p.m., and the off-peak load is increased and shifted from 
5895 MW at 5 a.m. to 6862 MW at 3 a.m. 
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Fig. 4. Generation and load of the EVPs according three utilization strategies for the target day 

 
This shows the considerable advantages of smart scheduling 

of EVs. In other words, the smart charge and discharge 
strategy not only has overcome the challenge of increased peak 
caused by the energy demanded by vehicles, but also it has 
improved the load characteristics of the system by shifting a 
significant portion of the peak load to the off-peak. 
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Fig. 5. the modified load model for the target day based on three utilization 
strategies  

 
Load factor (expressed in terms of percentage) is a measure 

of the uniformity and efficiency with which electrical energy is 
being used.  

A good load factor implies a more constant rate of electrical 
use, because MW demand is held to a minimum relative to 
total overall use. In essence, the better the load factor (near 
100%), the lower the established demand in relation to 
Megawatt hour (MWh) use and the lower the relative cost for 
electric service.  

The load factor is defined as the average load divided by 
the peak load in a specified time period. So, Table II compares 
the amount of load factor index in the case of no EV existing 
in the network with three mentioned strategies during the 
target day. 

TABLE II 
EVALUTE THE LOAD FACTOR INDEX DURING THE TARGET DAY  

Utilization strategy Load factor index 

without EVs 0.8583 

UCM 0.8560 

CCM 0.8656 

SCDM 0.9173 

 
The results show that in UCM, because of lack of control 

over the charging process, the lowest load factor is occurred. 
This fact shows that, in the UCM, the charging process can be 
imposed on the network as a large load that reduces the 
network load factor, compared with when there are no cars on 
the grid. In CCM, the index is improved, but in SDCM, 
through smart charging and discharging method, the best 
amount of load factor is achieved. 

As it can be seen, the proposed model not only helps the 
owners to supply and guarantee SOC requirement for their 
daily trips, but also improves the daily network load 
characteristic and load factor index. Also, EVP operator can 
determine the variable tariffs based on the proposed model to 
encourage vehicle’s owners to attend in the parking lots in 
different hours of a day and by utilizing proper quote strategy, 
participate in the electricity power market. 

V.  CONCLUSIONS 
Besides deceasing the environmental concerns, using 

electric vehicles causes the efficiency of the system to 
increase. In this paper, in order to modify the load 
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characteristics, a model is proposed for scheduling the charge 
and discharge of the batteries of EVs in parking lots based on 
the forecasted load in the price-sensitive environment of the 
smart grids. This model uses a neural network and a neuro-
fuzzy network to extract the pattern of customers’ reaction to 
the prices and consequently to obtain the modified forecasted 
load for the next day.  

To modify the forecasted load characteristics of the next 
day, a new method is presented for peak shaving, filling the 
off-peak times, smoothing the load curve, and preventing the 
severe fluctuations of the load curve. Once the parameters of 
charge and discharge are determined based on forecasted daily 
load, the Monte Carlo simulation is carried out for a long 
period of time in order to extract the load and generation of the 
set of EVs based on the forecasted load for the next day. The 
proposed model is applied on the actual sets of data from the 
NSW region in Australia's National Electricity Market for a 
target day (2015/01/10), and the results show the effectiveness 
of this model. Daily load characteristic and load factor 
improvement, reduction of net cost of purchase and sale of 
batteries’ energy and a pattern for EVP operator to determine a 
proper bid strategy in the electricity power markets, are 
examples of the benefits of the proposed model which can be 
further investigated. 
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VII.  NOMENCLATURE 
 d each day in a year 
a
dL  actual load in day d 
f
dL  forecasted load in day d 
i
dL  initial load forecast in day d 
i
dP  initial price forecast in day d 
m
dL  modified load forecaste in day d 
i each electric vehicle in the case study 

iD  distance travelled by the ith vehicle 
maxD  max distance which can be travelled by the vehicle 
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tD  time step in the interval under study 
Chrate charge rate 

Dchrate discharge rate 
Ki battery capacity of the ith vehicle 

i
tΨ  state of connected vehicle to the network 

N number of forecasted hours  
Act._L(t) actual load of the network at hour t 
For._L(t) forecasted load at hour t 
Ave._L(t) average actual load of the network 

 


